New Products

CNC Vision Measuring System QV Active

Refer to page K-3 for details.

Vision Measuring Machine with Micro-Form Scanning Probe MiSCAN Vision System Refer to page K-10 for details.

争

Vision Measuring System QUICK SCOPE QS-LRefer to page K-13 for details.

MiSCAN Vision System

QUICK SCOPE

HYPER MISCAN Vision System

Vision Measuring Systems

INDEX

Quick vision Series	
QV Active	K-3
QV Apex/Hyper QV	K-4
QV STREAM PLUS/QV ACCEL	K-5
ULTRA QV/Hyper QVWLI	K-6
QV TP	K-7
QVH Apex/Hyper QVH/QVH STREAM PLUS	K-8
Micro Form Measuring System	
UMAP Vision System	K-9
Vision Measuring Machine with Micro-Form Scanning Probe	
MiSCAN Vision System	K-10
Data Processing Software	
QVPAK	K-11
Application software	K-12
QUICK SCOPE Series	
QS-LZ/AFC	K-13
QUICK IMAGE Series	
Quick Image	K-14
Quick Guide to Precision Measuring Instruments	K-15

Vision measuring systems for multipurpose use

QV Active CNC Vision Measuring System

MeasurLink® ENABLED

Data Management Software by Mitutoyo

- Cost effective, multifunction, CNC Vision Measuring System.
- Usability has been improved by adopting a color camera and 8-step zoom optics.
- A touch-probe model can seamlessly perform non-contact and contact measurement.
- The zoom ratio of 7X (14X at maximum by changing the fixed-magnification objective lens) enables a wide range of inspection from wide view measurement at low magnification to micro-measurement at high magnification.
- The 74 mm maximum working distance (1X optional objective) promotes safe working by reducing the risk of collision, and allows greater freedom in fixture design.

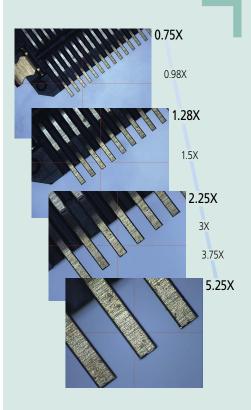
From wide view measurement to micro-measurement

Optical magnification	0.5X	0.65X	0.75X	0.85X	0.98X	1X	1.28X	1.3X	1.5X	1.7X	2X	2.25X	2.5X	3X	3.5X	3.75X	4X	5X	5.25X	7X
View field Horizontal (H) (mm) Vertical (V)	13.60	10.46	9.07 7.20	8.00 6.35	6.94 5.51	6.80 5.40	5.31 4.22	5.23 4.15	4.53 3.60	4.00 3.18	3.40 2.70	3.02 2.40	2.72 2.16	2.27 1.80	1.94 1.54	1.81	1.70 1.35	1.36 1.08	1.30	0.97 0.77
Total magnification (on the monitor			_					_			_	_	_		_					_
1X objective (optional) Working distance	•	•		•		•	-	74 mm	1		•		•		•					
1.5X objective (standard accessory) Working distance 2X objective (optional)	2	42 mm					•			•										
2X objective (optional) Working distance						•		•		•	•	42	mm	•			•	•		•

Note: The total magnification indicates the magnification on the monitor when the size of the **QVPAK** video window is 178.8×143.0 mm (default).

SPECIFICATIONS

Model		QV Active 202	QV Active 404	
Туре		Standard model	Standard model	
Measuring range (X×Y×Z)		250×200×150 mm (250×200×118 mm: when 1X objective is used)	400×400×200 mm (400×400×168 mm: when 1X objective is used)	
Observation unit		Zoom unit (8 positions)		
Imaging device		Color CMOS camera		
	E1x, E1Y	(2 + 3L/1000) μm		
	E _{1Z}	(3 + 5L/1000) μm		
Measuring accuracy*	E ₂	(2.5 + 4L/1000) μm		
	Accuracy guaranteed with optics specified	Objective: 1.5X, Optical magnification: 5.25X		
Touch-trigger probe measuring accuracy*		_	_	
Accuracy guaranteed temperature		20±1 °C	20±1 °C	

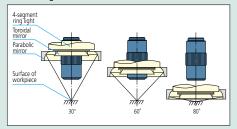

 $[\]mbox{*}$ Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Refer to the **QUICK VISION Active** Series Brochure (**E14022**) for more details.

MeasurLink ENABLED



An inspection certificate is supplied as standard. Refer to page U-11 for details.

- QV Series standard models range in size from compact to large.
- There are a general-purpose model with white LED light and an enhanced edge detection model with RGB color LEDs.
- A custom model with higher optical performance 3CCD camera is also available to order.

Programmable ring light

Fine control of obliquity and direction provides illumination optimal for measurement. Obliquity can be arbitrarily set in the range from 30° to 80°. Illumination can be controlled independently in every direction, back and forth, right and left.

Refer to the QUICK VISION Series Brochure (E14028) for more details.

QV Apex/Hyper QV CNC Vision Measuring System

Measurement example of IC package terminal bottom width

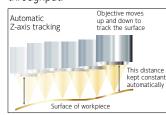


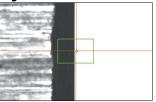
Image with programmable ring light

Tracking Auto Focus (TAF)

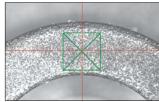
Laser radiation from the objective lens enables automatic focusing. The system automatically keeps the object in focus according to its shape, eliminating the task of focus adjustment and increasing measurement throughput.

Laser	Semiconductor laser
source	(peak wavelength: 690 nm)
Laser	Class 2 (JIS C6802: 2014,
safety	EN/IEC 60825-1: 2014)
Auto focus	Objective coaxial autofocusing
system	(knife-edge method)
	source Laser safety Auto focus

High-Performance Multi-Auto Focus


The **QV** Series is equipped with a high-performance image auto focus function as standard. Image auto focus is used to guarantee accuracy.

Thanks to the availability of various auto focus tools, the optimal focus for each surface texture and measured feature can be selected, which makes it possible to perform highly reliable height measurements.


Pattern Focus

Edge Focus

Surface Focus

SPECIFICATIONS

QV Apex

Model		QV Apex 302	QV Apex 404	QV Apex 606			
Measuring rang	je (X×Y×Z)	300×200×200 mm	400×400×250 mm	600×650×250 mm			
Observation Ur	nit	PT 1X-2X-6X					
Imaging Device)	B&W CCD (1/2 in)					
Magguring	E1x, E1Y		(1.5 + 3L/1000) μm	000) μm			
Measuring accuracy*	E1Z E2XY		(1.5 + 4L/1000) μm				
accuracy	E ₂ XY		(2 + 4L/1000) μm				

Hyper QV (Specifications other than as quoted in the table are the same as the QV Apex specifications.)

Model		Hyper QV 302	Hyper QV 404	Hyper QV 606				
Imaging Device		B&W CCD (1/2 in)						
Manaurina	E1x, E1Y		(0.8 + 2L/1000) μm					
Measuring	E _{1Z}		(1.5 + 2L/1000) μm					
accuracy*	E ₂ XY		(1.4 + 3L/1000) µm					

^{*} Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

Vision measuring systems for multipurpose use

OV STREAM PLUS Non-stop CNC Vision Measuring System

• The main unit operation and the strobe light are synchronized to enable vision measurement without stopping the stage. As it is unnecessary to increase or decrease the stage speed, measurement becomes 5X faster than conventional models depending on the object type. (Compared with

our conventional models.) • The model with tracking auto focus performs continuous measurement by adapting to height differences, thus reducing the measurement time significantly.

Flow of non-stop measurement

(Flash & Capture) (Flash & Capture) (Flash & Capture) (Flash & Capture)

MeasurLink® ENABLED

Refer to page U-11 for details.

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard

SPECIFICATIONS

Model No.		QV STREAM PLUS 302	QV STREAM PLUS 404	QV STREAM PLUS 606		
Measuring range (Xx'	Y×Z)	300×200×200 mm	400×400×250 mm	600×650×250 mm		
Observation unit		PT 1X-2X-6X				
Imaging device		B&W CCD (1/2 in)				
	Ε1X, Ε1Y (1.5 + 3L/1000) μm					
Measuring accuracy*	E _{1Z}		(1.5 + 4L/1000) µm			
	E ₂ XY	(2.0 + 4L/1000) μm				
Tracking auto focus d	levice	Optional				

* Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm) Note: Only one of the illumination functions (reflected, transmitted, and PRL illumination) can be set in STREAM mode. The 4-way PRL illumination can be set to 4-direction lighting or single-direction lighting.

QV ACCEL Large CNC Vision Measuring System

MeasurLink® ENABLED Data Management Software by Mitutoyo

• This is a vision measuring machine with moving-bridge type main unit structure suitable for measuring large objects.

• QV ACCEL 1212 (range: 1250×1250×100mm) and QV ACCEL 1517 (range: 1500×1750×100 mm) are available to special order.

• As the stage is immobile on the moving-bridge structure, you can use a simple method to fix a workpiece, which is suitable for measuring small, thin objects.

SPECIFICATIONS

Model No.			QV ACCEL 808	QV ACCEL 1010	
Measuring rang	e (X×Y×Z)		800×800×150 mm	1000×1000×150 mm	
Observation unit			PT 1X-	2X-6X	
Imaging device			B&W CC	D (1/2 in)	
Managemina	E1x, E1Y		(1.5 + 3L/1000) μm		
Measuring accuracy*	E1Z	(1.5 + 4L/1000) μm			
accuracy	E ₂ XY		(2.5 + 4L/1000) μm		
Popostability*	Short dimensions	X axis, Y axis	$3\sigma = 0$).2 μm	
Repeatability* Long dimensions		A dxis, i dxis	3 <i>σ</i> =0.7 μm		
Tracking auto focus device			Optional		

^{*} Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

MeasurLink[®] ENABLED

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Refer to the QUICK VISION Series Brochure (E14028) for more details.

MeasurLink' ENABLED

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Refer to the **QUICK VISION** Series Brochure (E14028) for more details.

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Refer to the QUICK VISION Series Brochure (E14028) for more details.

ULTRA QV 404 Ultra-High Accuracy CNC Vision Measuring System

- Ultra-high accuracy CNC vision measuring machine with measuring accuracy of E1XY $(0.25 + L/1000) \mu m$.
- Our proprietary high-resolution (Resolution: 0.01 µm) and high-accuracy low-expansion glass scales are used on the X, Y and Zaxes.
- The high-rigidity Y-axis table moving mechanism with fixed bridge has been adopted. The base is made of high stability granite.
- This model is standard-equipped with an automatic temperature compensation function that uses a temperature sensor on the main unit of the measuring machine and a temperature sensor for the workpiece.

SPECIFICATIONS

Model No.		ULTRA QV 404
Measuring range (X	×Y×Z)	400×400×200 mm
Observation unit		PT 1X-2X-6X
Imaging device		B&W CCD (1/2 in)
Magguring	E1x, E1Y	(0.25 + L/1000) μm
Measuring accuracy (E ₁) * ¹	E _{1Z} (Full stroke)	(1.5 + 2L/1000) µm (Range 200 mm)
accuracy (LI)	E _{1Z} (50 mm stroke)* ²	(1.0 + 2L/1000) µm (Range 10 to 60 mm)
Measuring accuracy (E ₂)*1 E ₂ xY		(0.5 + 2L/1000) μm
Tracking auto focus device		Optional

- *1 Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)
- *2 Verified at shipment from factory.

Hyper QVWLI Non-contact 3D Measuring System

Hyper QVWLI 606

- **Hyper QVWLI** is a high-accuracy complex 3D measurement system consisting of **QV** and a white light interferometer.
- Allows you to analyze 3D surface texture from 3D data captured by the WLI optical head. It is also suitable for measuring dimensions at a specific height and any cross-section from 3D data.

SPECIFICATIONS

Model No.		Hyper QVWLI 302	Hyper QVWLI 404	Hyper QVWLI 606		
Measuring range	Vision measuring area	300×200×190 mm	400×400×240 mm	600×650×220 mm		
(X×Y×Z)	WLI measuring area*1	215×200×190 mm	315×400×240 mm	515×650×220 mm		
WLI optical hea	d unit					
View field (H×V)		5X lens: approx. 0.64×0.48 mm/10X lens: approx. 0.32×0.24 mm/ 25X lens: approx. 0.13×0.10 mm/50X lens: approx. 0.064×0.048 mm				
Z repeatability	2 <i>σ</i> ≤ 0.08 μm					
Vision optical h	ead unit					
Observation unit		PT 1X-2X-6X				
Imaging device		B&W CCD (1/2 in)				
Managina	E1x, E1Y	(0.8 + 2L/1000) μm				
Measuring accuracy*2	E1Z	(1.5 + 2L/1000) µm				
accuracy	E ₂ XY	(1.4 + 3L/1000) µm				

^{*1} Movable range of WLI optical head.

^{*2} Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

Vision measuring systems for multipurpose use

QV TP CNC Vision Measuring System equipped with a Touch Trigger Probe

Non-contact and contact measurement on one machine

• **QV** touch-trigger probe unit enables both vision measurement and touch-trigger probe measurement.

3D workpiece measurement

• Enables 3D measurement of workpieces, such as press-molded products, plastic-molded products, and machined products, that until now could not be measured with image processing alone.

Module change rack available

• Using the module change rack enables switching between vision measurement and touch probe measurement during an automatic measuring sequence.

SPECIFICATIONS WITH TOUCH-TRIGGER PROBE OPTIONS MOUNTED

Items	Model No.	QV TP Active 202	QV TP Active 404
Moscuring	Vision	250×200×150 mm	400×400×200 mm
Measuring range *1 (X×Y×Z)	Common to Touch-trigger Probe	184×200×150 mm	334×400×200 mm
Measuring accuracy* ² (Touch-trigger probe)	E1x, E1y, E1z	(2.4 + 3L/1000) μm	(2.4 + 3L/1000) μm

Items	Model No.	QV TP Apex 302	QV TP Apex 404	QV TP Apex 606	Hyper QV TP 302	Hyper QV TP 404	Hyper QV TP 606
Moscuring	Vision	300×200×200 mm	400×400×250 mm	600×650×250 mm	300×200×200 mm	400×400×250 mm	600×650×250 mm
Measuring range *1 (X×Y×Z)	Common to Touch-trigger Probe	234×200×200 mm	334×400×250 mm	534×650×250 mm	234×200×200 mm	334×400×250 mm	534×650×250 mm
Measuring accuracy* ² (Touch-trigger probe)	E1x, E1y, E1z		(1.8 + 3L/1000) μm			(1.7 + 3L/1000) µm	

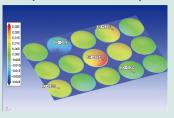
^{*1} When a module change rack, a master ball, and a calibration ring are mounted, the measurement ranges are smaller than those in the table. Other specifications are the same as those for **QV Active, QV Apex,** and **Hyper QV**. Please contact our sales office for more details.

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard.

Refer to page U-11 for details.

MeasurLink® ENABLED


Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

^{*2} Inspected by Mitutoyo standard. L=length between two arbitrary points (mm)

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Example of 3D form comparison

QVH Apex/Hyper QVH/ QVH STREAM PLUS CNC Vision Measuring System equipped with Non-contact displacement sensor

 A multi-sensor measuring machine equipped with an imaging optical head and non-contact displacement sensor. Both vision measurement and non-contact form measurement are possible.

 The laser probe equipped HYBRID TYPE1 and CPS probe equipped HYBRID TYPE4 are available.

Features: HYBRID TYPE1

- The focusing point method minimizes the difference in the measuring face reflectance and achieves high measurement reproducibility.
- Capable of measuring detailed shapes in high resolution.

Features: HYBRID TYPE4

- Enables detection of high inclination angles for both mirror and diffused Surfaces.
- The automatic lighting adjustment function allows for high accuracy measurements.
- Surface roughness or thickness measurement of thin and transparent objects such as film.

COMMON SPECIFICATIONS for TYPE1/TYPE4

Apex / Hyper (Specifications other than as described below are the same as for models QV Apex, Hyper QV.)

Items	N	Model No.	QVH Apex 302	QVH Apex 404	QVH Apex 606	Hyper QVH 302	Hyper QVH 404	Hyper QVH 606	
Vision			300×200×200 mm	400×400×250 mm	600×650×250 mm	300×200×200 mm	400×400×250 mm	600×650×250 mm	
Measuring range (X×Y×Z)	Non-contact	TYPE1	180×200×200 mm	280×400×250 mm	480×650×250 mm	180×200×200 mm	280×400×250 mm	480×650×250 mm	
	displacement sensor	TYPE4	176×200×200 mm	276×400×250 mm	476×650×250 mm	176×200×200 mm	276×400×250 mm	476×650×250 mm	
M	E1x, E1y		(1.5 + 3L/1000) μm			(0.8 + 2L/1000) μm			
Measuring accuracy* (Vision)	E _{1Z}		(1.5 + 4L/1000) μm			(1.5 + 2L/1000) μm			
(V 151011)	E ₂ XY		(2.0 + 4L/1000) μm			(1.4 + 3L/1000) μm			
Measuring accuracy (non- contact displacement sensor)*	E _{1Z}			(1.5 + 4L/1000) μm		(1.5 + 2L/1000) µm			

^{*} Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

SPECIFICATIONS for TYPE4

STREAM PLUS (Specifications other than as described below are the same as for model QV STREAM PLUS.)

Items	Model No.	QVH STREAM PLUS 302	QVH STREAM PLUS 404	QVH STREAM PLUS 606		
	Vision	300×200×200 mm	400×400×250 mm	600×650×250 mm		
Measuring range (X×Y×Z)	Non-contact displacement sensor	176×200×200 mm	276×400×250 mm	476×650×250 mm		
Manage +	E1x, E1Y		(1.5 + 3L/1000) µm			
Measuring accuracy* (Vision)	E _{1Z}	(1.5 + 4L/1000) μm				
(VISION)	E2XY		(2.0 + 4L/1000) μm			
Measuring accuracy (non- contact displacement sensor)*	E _{1Z}		(1.5 + 4L/1000) μm			

^{*} Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)

CLASS 1 LASER PRODUCT

Safety precautions regarding QV HYBRID TYPE1

This product uses a low-power invisible laser (780 nm) for measurement. The laser is a CLASS 1 EN/IEC 60825-1 device. A warning and explanation label, as shown above, is attached to the product as appropriate.

Vision measuring systems for multipurpose use

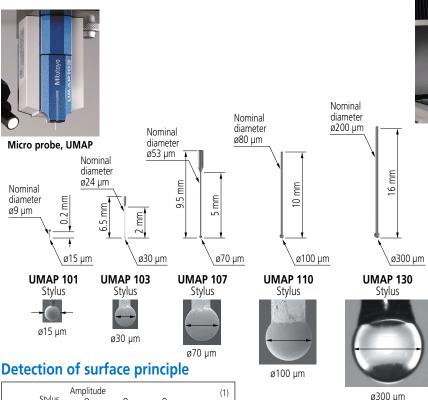
UMAP Vision System TYPE2 Micro Form Measuring System

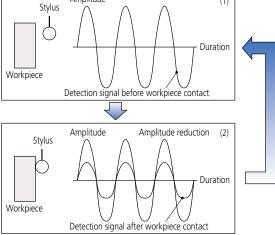
MeasurLink® ENABLED

Data Management Software by Mitutoyo

MeasurLink® ENABLED

Data Management Software by Mitutovo

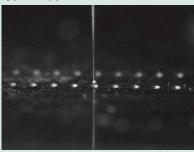

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).



An inspection certificate is supplied as standard. Refer to page U-11 for details.

Ultrasonic Micro Probe UMAP

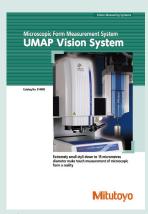
Contact measurement of a small hole's diameter and its section or contour is possible, which is difficult with a conventional Vision Measuring System or CMM. Capable of high accuracy, sophisticated, non-contact and contact measurement on one machine. With a minimum measuring force of 1 µN, it allows you to measure easy-to-deform and lightweight workpieces.



- In this drawing, the stylus is vibrating with micro amplitude. If it does not come into contact with the workpiece the vibration state is maintained.
- (2) As the stylus comes into contact with the workpiece surface the vibration amplitude decreases as the contact increases. When the decreasing amplitude falls below a certain level, a touch-trigger signal is generated.

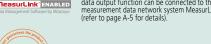
SPECIFICATIONS

51 ECITICATIONS											
Model No.			TYPE2								
Model No.			Hyper UMAP 302	ULTRA UMAP 404							
Measuring range (common to vision and UMAP)	X axis×	′ axis	185×200 mm	285×400 mm							
		UMAP 101/103	175 mm								
	Z axis	UMAP 107/110	180 mm								
OWAI)		UMAP 130	185 mm								
Measuring accuracy	E1x, E1Y		(0.8 + 2L/1000) μm	(0.25 + L/1000) µm							
(Vision)	E1Z		(1.5 + 2L/1000) μm								
Repeatability	UMAP	101/103/107	σ =0.1 μ m	σ=0.08 μm							
	UMAP	110/130	σ=0.15 μm	σ=0.12 μm							


Typical application

Contour measurement of a Ø0.125 mm hole

Measuring form of micro gear teeth


Refer to **UMAP Vision System** Brochure (**E14000**) for more details.

MeasurLink' ENABLED

An online system to monitor the operational and mechanical statuses of measuring machines. This allows you to grasp the state of a process flow from the operational status of measuring machines within a production process.

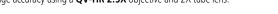
Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Vision Measuring Machine with Micro-Form Scanning Probe MiSCAN Vision System

- Hybrid measuring machine with vision head and scanning probe (MPP-NANO, SP25M).
- Newly developed **MPP-NANO** probe on which styli as small as 125 µm diameter can be mounted achieves autonomous 3D scanning of fine detail. The highly proven **SP25M** scanning probe is also supported.

- Using the observation camera, the approach to the workpiece for MPP-NANO stylus where visual confirmation is difficult can be easily performed while also checking for dirt and scratches on the workpiece.
- Using the same vision head as the **Quick** Vision Series, the best-selling vision measuring system, high level performance can be provided in vision measurement.


Precise positioning by monitoring the image

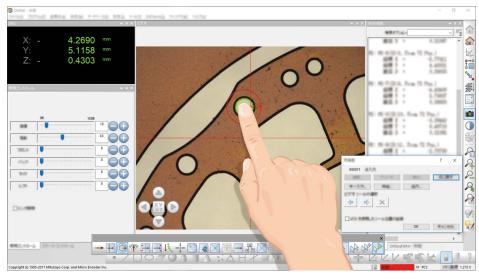
Measurement using MPP-NANO stylus

SPECIFICATIONS

SPECIFICATIONS									
Model No.			Hyper MVS 302	Hyper MVS 404	MVS Apex 404				
Measuring range	Vision measuri	ng area	300×200×200 mm	×250 mm					
(XxYxZ)	MPP-NANO/	SP25M	175×200×200 mm	275×400)×250 mm				
Imaging device				B&W CCD camera					
Observation unit				PT 1X-2X-6X					
Illumination unit			Co-axial light, Trar	nsmitted light, PRL (progra	mmable ring light)				
Contact type probe			MPP-NANO/SP25M	SP251	M only				
		E1x, E1y	(0.8 + 2L/	(1000) μm	(1.5 + 3L/1000) µm				
	Vision*	E _{1Z}	(1.5 + 2L/	1000) µm	(1.5 + 4L/1000) µm				
Measuring accuracy		E ₂ XY	(1.4 + 3L/	1000) µm	(2.0 + 4L/1000) µm				
	MPP-NANO	Ео, мре	(1.9 + 4L/1000) µm	_	_				
	SP25M	Ео, мре	(1.9 + 4L/	1000) µm	(2.5 + 6L/1000) µm				
Scanning accuracy	MPP-NANO		0.6 μm		-				
Scalling accuracy	SP25M	МРЕтнр	2.5	μm	2.7 µm				
Probing accuracy	MPP-NANO		0.6 µm	-	_				
riobilig accuracy	SP25M	PFTU, MPE	1.9	μm	2.2 μm				
Repeatabillity (σ)	Repeatabillity (σ) MPP-NANO			0.05 μm —					
Accuracy guaranteed	Ambient tempe	erature	18 to 23 °C						
temperature	Temperature va	ariation	0.5 °C/1 H and 1 °C/24 H						

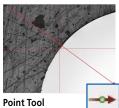
Brochure (E14024) for more details. * Image accuracy using a QV-HR 2.5X objective and 2X tube lens.

Mitutoyo


Refer to the MiSCAN Vision System

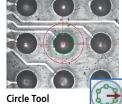
Vision measuring systems for multipurpose use

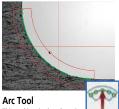
QVPAK Data Processing Software for QUICK VISION



• The X, Y, and Z position data is detected from the measurement data gathered by the Quick Vision system and the arithmetic processing of coordinates and dimensions is performed immediately.

Gesture operation, like operating a smartphone, enables easy tool layout or stage shifting on systems with touch screens.

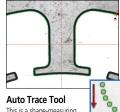

Edge Detection Tools


This is a basic tool for detecting one point.

This tool detects linear edges with a minimum of one pixel interval. Compared to the point tool, the Box tool can perform averaging and remove abnormal points, which enables stable measurements.

This tool detects circular edges with a minimum of one pixel space. Edges can be specified easily with a single click.

This tool is suited to detection of arcs and corner radii.


Maximum / Minimum Tool
This tool detects the maximum or minimum point within the range.

This tool detects the position of a form's centroid, and is suited to the positioning of different forms.

This tool performs pattern matching to detect a position, and is optimal for positioning alignment marks and similar tasks.

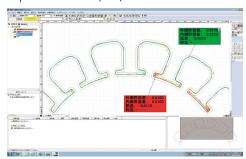
Auto Trace Tool
This is a shape-measuring tool that automatically tracks a contour with input consisting only of a start point and end point.

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

MeasurLink® ENABLED

the standard in world metrology software **VISION**

Refer to the **QUICK VISION** Series Brochure (**E14028**) for more details.

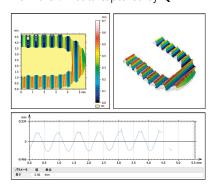

Application software (Optional)

QV PartManager

The **QV PartManager** is execution program management software for multiple workpieces arranged on the measuring stage.

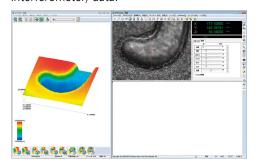
Form assessment/analysis software FORMTRACEPAK-AP

Verification of designed value and form analysis are performed on the basis of the contour data obtained via the **QV** auto trace tool, non-contact displacement sensor, PFF, and WLI.

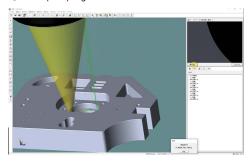


FORMTRACEPAK-PRO

This software performs 3D form analysis from the data obtained via the non-contact displacement sensor of the **QVHYBRID** Series.


MCubeMap

Allows you to analyze parameters compliant with JIS B681-2: 2018 (ISO25178-6: 2010), such as Sa, Sq and other height parameters from the 3D data captured by **QVWLI**.


QV3DPAK

This software generates 3D forms from the PFF (Points From Focus) or WLI (White Light Interferometer) data.

Measurement support software QV3DCAD

QV3DCAD uses 3D CAD models to easily create **QVPAK** part program both online and offline.

Offline teaching software EASYPAG-PRO

This software creates **QVPAK** measurement procedure programs using 2D CAD data.

Statistical processing software MeasurLink

This software enables statistical arithmetic processing of measurement results.

External control software QVEio

Allows you to externally control or output the operating status of a **QV** connected to a PLC or PC.

Vision measuring systems for multipurpose use

QS-LZ/AFC Manual Vision Measuring System

- Manual vision measuring system with a high speed, high-definition auto focus 3-megapixel camera.
- A 4-quadrant high-intensity LED ring light provides excellent observation performance.
- The newly designed zoom unit and interchangeable objectives achieve a maximum magnification ratio of 14X. Viewing possibilities extend from low

QS-L3017Z/AFC

From wide view measurement to micro-measurement

Opt	tical ma	gnification	0.5X	0.65X	0.75X	0.85X	0.98X	1X	1.28X	1.3X	1.5X	1.7X	2X	2.25X	2.5X	3X	3.5X	3.75X	4X	5X	5.25X	7X
Vie (mr	w field	Horizontal (H) Vertical (V)	13.2 9.9	10.2 7.7	8.8 6.6	7.8 5.9	6.8 5.1	6.6 5.0	5.2 3.9	5.1 3.8	4.4 3.3	3.9 2.9	3.3 2.4	2.9	2.6 2.0	2.2	1.8	1.7	1.7	1.3 1.0	1.2 1.0	0.9 0.7
		ation (on the monitor)	20	26	30	34	39	40	51	52	60	68	79.3	89	99.3	119	138.7	149	158.7	198.7	208	277.3
lens		ective (optional) ng distance	•	•		•		•	7	74 mn	1		•		•		•					
Objective	1.5X o accesso	bjective (standard ry) Working distance			•		•		•		•	42 1	mm	•		•		•			•	
2X objective (optional) Working distance					42 1	mm	•			•	•		•									

Note: The total magnification indicates the magnification on the monitor when the size of the QSPAK video window is 252.7×214.9 mm (default).

SPECIFICATIONS

Model No.		QS-L2010Z/AFC	QS-L2010Z/AFC					
Drive method		Auto focus equipped, X, Y axis: manual; Z axis: motor-operated						
Measuring range (X×Y×	:Z)	200×100×150 mm	300×170×150 mm	400×200×150 mm				
Resolution/Scale unit		0.1 μm/Linear encoder						
Measuring accuracy*1*2	X axis, Y axis	(2.2 + 0.02L/1000) μm						
ivieasuring accuracy	Z axis	(4.5 + 0.006L/1000) µm						
Accuracy guaranteed temp	perature	20±1 °C						
Observation unit*3		7X zoom (8 steps) interchangeable objective lenses (1X objective 0.5X - 3.5X; 1.5X objective 0.75X - 5.25X; 2X objective 1X - 7X)						
Image detection metho	d	3 megapixel, CMOS color camera (1/2 in)						
	Transmitted light	White LED						
Illumination	Co-axial light	White LED						
	Ring light	4-quadrant white LED						

- *1 Inspected to a Mitutoyo standard. L=length between two arbitrary points (mm)
- *2 3X lens magnification or greater
- *3 1X and 2X objective lenses are optional

Refer to the QUICK SCOPE QS-L Brochure (E14004) for more details.

Products equipped with the measurement data output function can be connected to the measurement data network system MeasurLink (refer to page A-5 for details).

MeasurLink ENABLED

An inspection certificate is supplied as standard. Refer to page U-11 for details.

MeasurLink ENABLED

An inspection certificate is supplied as standard. Refer to page U-11 for details.

Mitutoyo

Mikutoyo Qualit

Quick Image Non-contact 2D Vision Measuring System

- This series of manual 2D vision measuring machines offers high-efficiency measurement by employing a telecentric optical system that has a deep focal depth and a wide view
- The stitching function enables the entire display of a large workpiece so that highly accurate and speedy measurement can be performed.
- A model equipped with a motorized stage has been added to the series to offer easy and comfortable stage operation.
- A single click enables multiple measurements in one display. A batch measurement can be applied to multiple workpieces in the display after executing a pattern search based on the workpiece position.
- This series is equipped with a 3-megapixel color camera. Even with low magnification, high repeatability can be obtained.
- The choice of five stage sizes makes it easy to choose a machine to suit the user's application.
- The video window automatically displays the measurement data, which enables quick

QI-C2017D

A motorized stage

(E14009) for more details.

Refer to the QUICK IMAGE Series Brochure

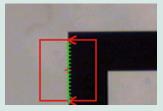
SPECIFICATIONS								
		1	Manual stage mode	اع ا	Motorized stage model			
Model 0.2X	QI-A1010D	QI-A2010D	QI-A2017D	QI-A3017D	QI-A4020D	QI-C2010D	QI-C2017D	QI-C3017D
0.5X	QI-B1010D	QI-B2010D	QI-B2017D	QI-B3017D	QI-B4020D			
Measuring range (X×Y)	100×100 mm	200×100 mm	200×170 mm	300×170 mm	400×200 mm	200×100 mm	200×170 mm	300×170 mm
Effective stage glass size	170×170 mm	242×140 mm	260×230 mm	360×230 mm	440×232 mm	242×140 mm	260×230 mm	360×230 mm
Maximum stage loading *	Approx	. 10 kg	Approx	c. 20 kg	Approx. 15 kg	Approx. 10 kg	Approx	c. 20 kg
Main unit mass	Approx. 65 kg	Approx. 69 kg	Approx. 150 kg	Approx. 158 kg	Approx. 164 kg	Approx. 72 kg	Approx. 153 kg	Approx. 161 kg

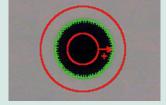
* Does not include extremely offset or concentrated loads

	e extremely offset or concer	itiateu loaus						
Model			QI-A/QI-C	QI-B				
View field			32×24 mm	12.8×9.6 mm				
Measurement mo	ode		High resolution mode/Normal mode *4					
Travel range (Z ax	(is)		100	mm				
	Measurement accuracy	High resolution mode	±2 μm	±1.5 μm				
Manageria	within the screen *1	Normal mode	±4 μm	±3 µm				
Measuring accuracy	Repeatability within the	High resolution mode	±1 μm	±0.7 μm				
accuracy	screen ($\pm 2\sigma$)*2	Normal mode	±2 μm	±1 μm				
	Measurement accuracy (E	1xy) *1	\pm (3.5 + 0.02L) μ m L=arbitrary measuring length (mm)					
Monitor magnific	cation *3		7.6X	18.9X				
	Magnification (Telecentric	Optical System)	0.2X	0.5X				
Optical system	Depth of focus	High resolution mode	±0.6 mm	±0.6 mm				
Optical system	Deptil of locus	Normal mode	±11 mm	±1.8 mm				
	Working distance		90 mm					
Camera			3 megapixel, CMOS color camera (1/2 in)					
		Transmitted light	Green LED telece	entric illumination				
Illumination		Co-axial light	White LED					
Ring light			4-quadrant white LED					
Power supply			AC100 to 240 V 50/60 Hz					
Accuracy guaran	teed temperature		20±1 °C					

- *1 Inspected to Mitutoyo standards by focus point position.
- *2 The measuring accuracy is guaranteed to be accurate within the depth of focus. *3 For 1X digital zoom (when using a 22-inch-wide monitor)
- *4 Patent registered (Japan)

Quick Guide to Precision Measuring Instruments

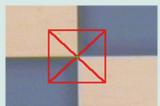

Vision Measuring Machines


Vision Measurement

Vision measuring machines mainly provide the following processing capabilities.

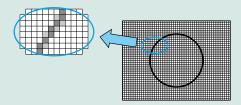
Edge detection

Detecting/measuring edges in the XY plane



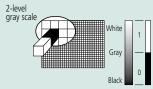
Auto focusing

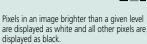
Focusing and Z-axis measurement

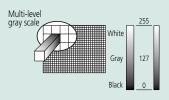


Pattern recognition

Alignment, positioning, and inspecting a feature

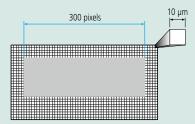

Image Storage




An image is comprised of a regular array of pixels. This is just like a picture on fine plotting paper with each square solid-filled differently.

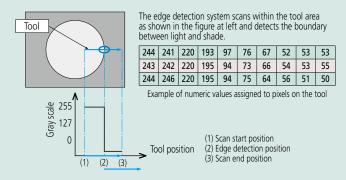
Gray Scale

A PC stores an image after internally converting it to numeric values. A numeric value is assigned to each pixel of an image. Image quality varies depending on how many levels of gray scale are defined by the numeric values. The PC provides two types of gray scale: two-level and multi-level. The pixels in an image are usually displayed as 256-level gray scale.

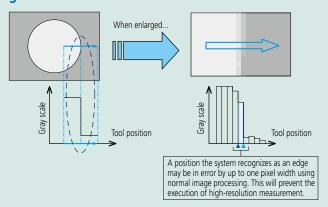


Each pixel is displayed as one of 256 levels between black and white. This allows high-fidelity images to be displayed.

Dimensional Measurement


An image consists of pixels. If the number of pixels in a section to be measured is counted and is multiplied by the size of a pixel, then the section can be converted to a numeric value in length. For example, assume that the total number of pixels in the lateral size of a square workpiece is 300 pixels as shown in the figure below.

If a pixel size is 10 μ m under imaging magnification, the total length of the workpiece is given by 10 μ m ×300 pixels=3000 μ m=3 mm.

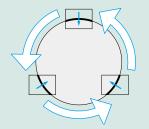


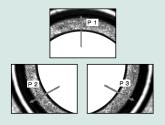
Edge Detection

How to actually detect a workpiece edge in an image is described using the following monochrome picture as an example. Edge detection is performed within a given domain. A symbol which visually defines this domain is referred to as a tool. Multiple tools are provided to suit various workpiece geometries or measurement data.

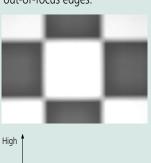


High-resolution Measurement


To increase the accuracy in edge detection, sub-pixel image processing is used. An edge is detected by determining an interpolation curve from adjacent pixel data as shown below.


As a result, it allows measurement with a resolution better than 1 pixel.

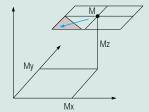
Measurement along Multiple Portions of an Image


Large features that cannot be contained on one screen have to be measured by precisely controlling the position of the sensor and stage so as to locate each reference point within individual images. By this means the system can measure even a large circle, as shown below, by detecting the edge while moving the stage across various parts of the periphery.

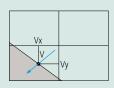
Variation in Contrast Depending on the Focus Condition

Edge contrast is low due to out-of-focus edges.

sharp, in-focus edges.


High

Contrast in the scanning direction


Edge contrast is high due to

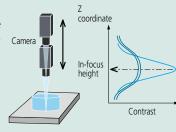
Composite Coordinates of a Point

Machine coordinate system

Vision coordinate system

Measuring machine stage position M = (Mx, My, Mz)

Detected edge position (from the center of vision) V = (Vx, Vy)


Actual coordinates are given by X=(Mx+Vx), Y=(My+Vy), and Z=Mz, respectively.

Since measurement is performed while individual measured positions are stored, the system can measure dimensions that cannot be included in one screen, without problems.

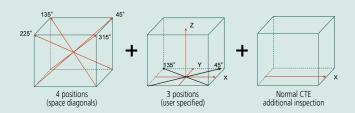
Principle of Auto Focusing

The system can perform XY-plane measurement, but cannot perform height measurement using only the camera image. The system is commonly provided with the Auto Focus (AF) mechanism for height measurement. The following explains the AF mechanism that uses a common image, although some systems may use a laser AF.

The AF system analyzes an image while moving the camera up and down in the Z axis. In the analysis of image contrast, an image in sharp focus will show a peak contrast and one out of focus will show a low contrast. Therefore, the height at which the image contrast peaks is the just-in-focus height.

Overview of ISO 10360-7

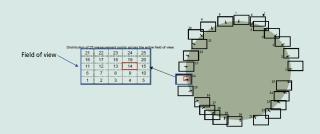
Contrast in the scanning direction


ISO 10360-7 (Geometrical product specifications (GPS) -- Acceptance and reverification tests for coordinate measuring machines (CMM) -- Part 7: CMMs equipped with imaging probing systems) was published on June 1, 2011.

Some inspection items are listed in ISO 10360-7. The following summarizes the test method for determining length measurement error (E) and probing error (PF2D).

Length measurement error, E

Five test lengths in seven different directions within the measuring volume, each length measured three times, for a total of 105 measurements. Four directions are the space diagonal. Remaining three directions are user specified; default locations are parallel to the VMM axes.


When CTE (coefficient of thermal expansion) of the test-length artifact is $< 2 \times 10^{-6}$ /K, additional measurement using an artifact with a normal CTE (8 to 13×10^{-6} /K) is performed.

Probing error, PF2D

Measure 25 points distributed evenly around the test circle (14.4° pitch). Each of the 25 points shall be measured using the specified 25 areas of the field of view.

Calculate probing error as the range of the 25 radial distances (Rmax - Rmin) from the center of the least-square circle.

